Benha University
Faculty Of Engineering at Shoubra

Dr: Moataz Hsheribini
motaz.ali@feng.bu.edu.eg

Remember

Series Resonance
[1] $\omega_{0}=\frac{1}{\sqrt{L C}} \quad, f_{0}=\frac{1}{2 \pi \sqrt{L C}}$
[2] $Z=R+j\left(\omega L-\frac{1}{\omega c}\right) \rightarrow t_{0} t_{2}$ series Res. $z=R$ (at resonance).
(3) $B W=\omega_{2}-\omega_{1}=\frac{R}{L}=\frac{\omega_{0}}{Q}$

[5] $\omega_{0}=\sqrt{\omega_{1} \omega_{2}}$
(6) $Q=\frac{\omega_{0} L}{R}=\frac{1}{\omega_{0} R C}$

Parallel Resonance Circuit

It is usually called tank circuit

Ideal Circuits

FIG. 20.21
Ideal varallel resonant network.

Practical Circuits

FIG. 20.22
Practical parallel L-C network.

Ideal Parallel Resonance Circuit

The total admittance

$$
\begin{aligned}
& Y=Y_{1}+Y_{2}+Y_{3} \\
& Y=\frac{1}{R}+\frac{1}{(j \omega \cdot L)}+\frac{1}{(-j / \omega \cdot C)} \\
& Y=\frac{1}{R}+\frac{-j}{\omega L}+j \omega C \\
& Y=\frac{1}{R}+j(\omega C-1 / \omega L)
\end{aligned}
$$

Condition for Ideal Parallel Resonance

Resonance occurs when the imaginary part of \mathbf{Y} is zero

$$
\begin{gathered}
\omega C-\frac{1}{\omega L}=0 \\
X_{C}=X_{L}
\end{gathered}
$$

$$
\omega_{0}=\frac{1}{\sqrt{L C}} \mathrm{rad} / \mathrm{s}
$$

Ideal Parallel Resonance Circuit

At parallel resonance:
\checkmark At resonance, the admittance consists only conductance $G=1 / R$.
\checkmark The value of current will be minimum since the total admittance is minimum.
\checkmark The voltage and current are in phase (Power factor is unity).
\checkmark The inductor reactance and capacitor reactance canceled, resulting in a circuit voltage simply determined by Ohm's law as:

$$
\mathbf{V}=\mathbf{I} R=I R \angle 0^{\circ}
$$

\checkmark The frequency response of the impedance of the parallel circuit is shown

Inductive
impedance
\qquad Capacitive impedance

Ideal Parallel Resonance Circuit

The Q of the parallel circuit is determined from the definition as

$$
\begin{aligned}
Q_{\mathrm{P}} & =\frac{\text { reactive power }}{\text { average power }} \\
& =\frac{V^{2} / X_{L}}{V^{2} / R} \\
Q_{\mathrm{P}} & =\frac{R}{X_{L \mathrm{P}}}=\frac{R}{X_{C}}
\end{aligned}
$$

Reciprocal of series case

The current

$$
\mathbf{I}_{R}=\frac{\mathbf{V}}{\mathbf{R}}=\mathbf{I}
$$

$$
\begin{aligned}
\mathbf{I}_{L} & =\frac{\mathbf{V}}{X_{L} \angle 90^{\circ}} & \mathbf{I}_{C} & =\frac{\mathbf{V}}{X_{C} \angle-90^{\circ}} \\
& =\frac{V}{R / Q_{\mathrm{P}}} \angle-90^{\circ} & & =\frac{V}{R / Q_{\mathrm{P}}} \angle 90^{\circ} \\
& =Q_{\mathrm{P}} I \angle-90^{\circ} & & =Q_{\mathrm{P}} I \angle 90^{\circ}
\end{aligned}
$$

\checkmark The currents through the inductor and the capacitor have the same magnitudes but are 180 out of phase.
\checkmark Notice that the magnitude of current in the reactive elements at resonance is Q times greater than the applied source current.

Ideal Parallel Resonance Circuit

$>$ Parallel resonant circuit has same parameters as the series resonant circuit.
Resonance frequency:

$$
\omega_{\mathrm{p}}=\frac{1}{\sqrt{\mathrm{LC}}} \mathrm{rad} / \mathrm{s}
$$

Half-power frequencies:

Bandwidth and Q-factor:

$$
\omega_{1}=-\frac{1}{2 R C}+\sqrt{\frac{1}{4 R^{2} C^{2}}+\frac{1}{L C}} \quad(\mathrm{rad} / \mathrm{s})
$$

$$
\omega_{2}=\frac{1}{2 R C}+\sqrt{\frac{1}{4 R^{2} C^{2}}+\frac{1}{L C}}(\mathrm{rad} / \mathrm{s})
$$

$$
\mathrm{BW}=\omega_{2}-\omega_{1}=\frac{1}{R C} \quad(\mathrm{rad} / \mathrm{s})
$$

$$
\mathrm{BW}=\frac{\omega_{\mathrm{P}}}{R\left(\omega_{\mathrm{P}} C\right)}=\frac{X_{C}}{R} \omega_{\mathrm{P}}
$$

$$
\mathrm{BW}=\frac{\omega_{\mathrm{P}}}{Q_{\mathrm{P}}} \quad(\mathrm{rad} / \mathrm{s})
$$

$$
Q=\frac{\omega_{0}}{B}=\omega_{0} R C=\frac{R}{\omega_{0} L}
$$

ملخص قوانين المحاضرة

Ideal circuit

(2) $x_{L}=\chi_{c}$ at Resonance $\therefore \quad \omega_{P}=\frac{1}{\sqrt{L C}} \mathrm{rad} / \mathrm{s}$
(3)

$$
\begin{aligned}
Y & =\frac{1}{z}=Y_{1}+Y_{2}+Y_{3} \\
& =\frac{1}{R}+j\left(w c-\frac{1}{w_{2}}\right)
\end{aligned}
$$

(4) at Resonaxe $G i=\frac{1}{R}$

Q|Z1, I inphase. Cadrittenk

(5)

$$
\begin{aligned}
& Q_{p}=\frac{R}{X_{C}}=\frac{R}{R L}=\frac{\omega_{p}}{B W} \\
& =R / W L=\omega R C
\end{aligned}
$$

6)

$$
\begin{aligned}
B W & =\omega_{2}-\omega_{1}=\frac{1}{R C} \mathrm{rad} / \mathrm{s} \\
& =\omega_{p} / Q_{p}
\end{aligned}
$$

$$
\begin{array}{r}
{\left[7 \omega_{1}=\frac{-1}{2 R C}+\sqrt{\frac{1}{4 R^{2} c^{2}}+\frac{1}{L C}}\right.} \\
\omega_{2}=\frac{+1}{2 R C}+\sqrt{\frac{1}{4 R^{2} C^{2}}+\frac{1}{L C}}
\end{array}
$$

Note For Midband

$$
\begin{aligned}
& w_{1}=w_{p}-B I_{2} \\
& w_{2}=w_{p}+B / 2
\end{aligned}
$$

Example

Example (1)

Consider the circuit shown in Figure

Given the parallel resonant circuit of Fig. 16 composed of ideal elements:
a) Determine the resonant frequency fp
b) Find the total impedance at resonance
c) Calculate the quality factor and bandwidth of the system
d) Find the voltage VC at resonance
e) Determine current IL and IC
f) Calculate the cut-off frequencies f 1 and f 2

Example (1)

Solution
a) $\quad f_{p}=\frac{1}{2 \pi \sqrt{\text { LC }}}=\frac{1}{2 \pi \sqrt{\left(1 \times 10^{-3}\right)\left(1 \times 10^{-6}\right)}}$

$$
=5.03 \mathrm{kHz}
$$

b)

$$
\mathrm{Z}_{\mathrm{T}}=\mathrm{R}_{\mathrm{s}} \square \mathrm{Z}_{\mathrm{L}} \square \mathrm{Z}_{\mathrm{C}}=\mathrm{R}_{\mathrm{s}}=10 \mathrm{k} \Omega
$$

c)

$$
\begin{aligned}
Q_{p} & =\frac{R_{S}}{X_{L}}=\frac{R_{S}}{2 \pi f_{p} L}=\frac{10 \times 10^{3}}{2 \pi\left(5.03 \times 10^{3}\right)\left(1 \times 10^{-3}\right)} \\
& =316.41
\end{aligned}
$$

$$
B W=\frac{f_{p}}{Q_{p}}=\frac{5.03 \times 10^{3}}{316.41}=15.9 \mathrm{~Hz}
$$

Example (1)

d) $\quad V_{C}=I Z_{T}=\left(10 \times 10^{-3}\right)\left(10 \times 10^{3}\right)=100 \mathrm{~V}$
e)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{X}_{\mathrm{L}}}=\frac{\mathrm{V}_{\mathrm{C}}}{2 \pi \mathrm{f}_{\mathrm{p}} \mathrm{~L}}=\frac{100}{2 \pi\left(5.03 \times 10^{3}\right)\left(1 \times 10^{-3}\right)}=\frac{100}{31.6}= \\
& \mathrm{I}_{\mathrm{C}}=\frac{V_{\mathrm{C}}}{\mathrm{X}_{\mathrm{C}}}=\frac{100}{31.6}=3.16
\end{aligned}
$$

f)

$$
\begin{aligned}
f_{2} & =\frac{f_{p}}{2 Q_{p}}+f_{p} \sqrt{\left(\frac{1}{2 Q_{p}}\right)^{2}+1} \\
& =\frac{5030}{2 \times 316.4}+5030 \sqrt{\left(\frac{1}{2 \times 316.4}\right)^{2}+1}=5041.9 \mathrm{~Hz} \\
f_{1} & =-\frac{f_{p}}{2 Q_{p}}+f_{p} \sqrt{\left(\frac{1}{2 Q_{p}}\right)^{2}+1} \\
& =5026.02 \mathrm{~Hz}
\end{aligned}
$$

Example (2)

Find the following parameters:
a). Circuit Impedance in polar form.
b). Is the circuit more inductive or more capacitive?
c). At what frequency does the circuit change its reactive characteristic from inductive to capacitive or vice-versa?

Example (2)

a). Circuit Impedance in polar form.

$$
\begin{aligned}
& X_{L}=2 \pi f L=2 \pi(12 \mathrm{kHz})(15 \mathrm{mH})=1131 \Omega \\
& X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi(12 \mathrm{kHz})(0.022 \mu \mathrm{~F})}=603 \Omega \\
& \mathrm{Z}=\frac{1}{\frac{1}{100 \angle 0^{\circ} \Omega}+\frac{1}{1131 \angle 90^{\circ} \Omega}+\frac{1}{603 \angle-90^{\circ} \Omega}} \\
& =\frac{1}{10 \mathrm{mS}-\mathrm{j} 0.884 \mathrm{mS}+\mathrm{j} 1.66 \mathrm{mS}}=99.7 \angle-4.43^{\circ} \Omega \\
& \mathrm{Y}_{\mathrm{T}}=10 \mathrm{mS}+\mathrm{j} 0.776 \mathrm{mS}=0.01003 \mathrm{~S} \angle 4.43^{\circ} \\
& \mathrm{Z}_{\mathrm{T}}=1 / \mathrm{Y}_{\mathrm{T}}=1 /\left(.01003 \mathrm{~S} \angle 4.43^{\circ}\right)=99.7 \mathrm{ohms} \angle-4.43^{\circ}
\end{aligned}
$$

Example (2)

b). Since θ of $Z_{T}=-4.43^{\circ}$, the circuit is slightly capacitive.
c).

$$
\begin{aligned}
& X_{L}<X_{C} \\
& 2 \pi f L<\frac{1}{2 \pi f C} \\
& f^{2}<\frac{1}{4 \pi^{2} L C} \\
& f<\frac{1}{\sqrt{4 \pi^{2} L C}} \\
& f<\frac{1}{2 \pi \sqrt{L C}} \\
& f<\frac{1}{2 \pi \sqrt{(15 \mathrm{mH})(0.022 \mu \mathrm{~F})}} \\
& f<\mathbf{8 . 7 6 ~ \mathbf { ~ k H z }}
\end{aligned}
$$

Example (3)

Find the following parameters:
a). All currents and voltages in polar form if the source frequency is 12 KHz .
b). The current phasor diagram.

Example (3)

a). All currents and voltages in polar form.

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{T}}=\frac{\mathbf{V}_{\mathbf{s}}}{\mathbf{Z}}=\frac{5 \angle 0^{\circ} \mathrm{V}}{99.7 \angle-4.43^{\circ} \Omega}=\mathbf{5 0 . 2} \angle \mathbf{4 . 4 3} 3^{\circ} \mathrm{mA} \\
& \mathbf{I}_{\mathbf{R}}=\frac{\mathbf{V}_{\mathbf{s}}}{\mathbf{R}}=\frac{5 \angle 0^{\circ} \mathrm{V}}{100 \angle 0^{\circ} \Omega}=\mathbf{5 0 \angle 0 ^ { \circ }} \mathbf{~ m A} \\
& \mathbf{I}_{\mathrm{L}}=\frac{\mathbf{V}_{\mathbf{s}}}{\mathbf{X}_{\mathbf{L}}}=\frac{5 \angle 0^{\circ} \mathrm{V}}{1131 \angle 90^{\circ} \Omega}=\mathbf{4 . 4 2 \angle - 9 0 ^ { \circ } \mathrm { mA }} \\
& \mathbf{I}_{\mathrm{C}}=\frac{\mathbf{V}_{\mathbf{s}}}{\mathbf{X}_{\mathbf{C}}}=\frac{5 \angle 0^{\circ} \mathrm{V}}{603 \angle-90^{\circ} \Omega}=\mathbf{8 . 2 9 \angle 9 0 ^ { \circ }} \mathbf{m A} \\
& \mathbf{V}_{R}=\mathbf{V}_{\mathbf{L}}=V_{C}=5 \angle 0^{\circ} \mathrm{V}
\end{aligned}
$$

Example (3)

b). Current phasor diagram:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=8.29 \mathrm{~mA} \\
& \uparrow\left(I_{C}-I_{L}\right)=3.87 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{L}}=\mathbf{4 . 4 2 \mathrm { mA }}
\end{aligned}
$$

Example (4)

Consider the parallel RLC resonant circuit with "ideal" elements given below.

1) The total impedance seen by the source at resonance is
(a) 0
(b) $2 k \Omega$
(c) $2 \mathrm{M} \Omega$
(d) infinity

Ans: (b)
2) The resonant frequency approximately is
(a) 10 Hz
(b) 100 KHz
(c) 160 KHz
(d) 500 KHz

Ans: (c)

SELF-TEST

Consider the parallel RLC resonant circuit with "ideal" elements given below.

2) The current through the resistance $\left(I_{R}\right)$ at resonance is
(a) 0
(b) 1 mA
(c) 2 mA
(d) 10 mA

Ans: (c)
3) 4) The inductor current I_{L} at resonance is
a) Equal to I_{R}
b) Equal to I_{c}
c) Equal and opposite to Ic_{c}
d) Equal to I

